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INTRODUCTION

A lidar (light detection and ganging) consists of a very short pulse of laser energy. The intensity of the
laser energy scattered back to a receiver by atmospheric aerosols is recorded as a function of time, and
therefore distance. The relative intensity of the light received from a given distance depends on the size,
shape, and composition of the aerosols, both at that distance and along the intervening path.

Relative humidity can have a pronounced effect on the atmospheric aerosols. As the relative humidity
increases, condensation of water vapor on pariicles contzining water-soluble material causes the size and
index of refraction of these particles to change (Fitzgerald, 1984). This causes the backscatter coefficient
10 increase with increasing relative humidity.

Since radio refractivity is also strongly dependent on relative humidity, it may be possible to use a lidar
to get a measure of radio refractivity profiles. Of particular interest would be profiles indicating low-level
and surface duct conditions.

A lidar has been used to measure the intensity of backscattered laser light as a function of altitude.
The lidar (known as a visioceilometer) was a modified AN/GVS-S$ laser rangefinder. This lidar opera:es at
1.06 um with a nominal pulse energy of 13 mJ. The pulse half-width is 6 ns and the sampling rate is 20
MHz. This provides a sample every 7.5 meters. Table 1 lists additional characteristics of the lidar, as
given by Lentz (1982). Some of these characteristics may have changed slightly since this table was
produced.

Table 1. Characteristics of the visioceilometer lidar.

Beam divergernce .................... 1.0 mrad

Receiver field of view ................. 3.0 mrad

Laserenergy .........covvn vuiinnn.. 13 mJ at 1.06 um

Pulse half-width ... ................. 6 ns

Receiver aperture .................... 50 mm

Laser exit diameter ..... ............ 16 mm

Optics axis separation . ...... ......... 50 mm

Full crossover range .................. 80 m

Log Aslope .........cooiiivniin... 10 mV/dB

Log Azero ........ooovinnn i, 80 uVv

Detector noise level ................ .. 2x 100w

Laser monitor output . ..... .......... .75 £ 0258 V

Samplerate ................. ... ... 20 MH:z

A/Dconverter ... .................... 10 bits in 2 ps

Sample device ....................... 455-sample dual-channel CCD
(Fairchild #CCD 321)

Operating temperature ................ -5° to 60°C (prototype)

Samplerange ............... ... ..., 33 km

When the lidar is operated in the vertical direction in the presence of a cloud layer, a profile of the
range-compensated backscattered signal, S(R), shows rapid increase in returned signal near the base of
the cloud. This is a result of the increased backscatter from the cloud particles. A rapid decrease in
returned signal follows as the signal penetrates the cloud and is attenuated. Figure 1 shows an example of
this.

When an inversion exists, and if no clouds are present, the lidar return shows a very rapid decrease at
th. height of the inversion, as shown in figure 2. This results from a decrease in the backscattered signal




above the inversion, rather than from increased extinction. This decrezse in backscattered signal
corresponds to, and results from, a decrease i1: relative humidity through the inversion. An example of
this is shown in figure 3.

Since tropospheric ducting of radiowaves is also a result of atmospheric inversions, it would be of
interest to investigate whether lidar returns could be used to predict the presence, or absence, of ducting
conditions. Of particular interest ars low-level and surface-based ducts.

While the use of radiosondes is an established and standard method of determining the presence and
location of ducts, there may be times when it is necessary to know whether ducting conditions exist but
when radio signals transmitted from a radiosonde cannot be permitted. Furthermore, not all ships have
radiosonde capability and this might help fill a need.

This type of remote sensor of refractivity profiles would also permit more frequent assessment of
conditions.

MEASUREMENTS

The measurements were made at the southern tip of Point Loma in San Diego. This site is about
30 meters above sea level. The lidar was pointed in the vertical direction and 5 or 6 raw data profiles
were recorded. A balloon-borne radiosonde was launched at the same time and temperature, pressure,
and relative humidity were recorded as functions of time as the balloon rose. Measurements were made
on an irregular basis. They were started on 12 September 1989 and ended on 21 November 1989.
Usually, oniy one balloon launch was made on any given day. The dates when measurements were made
are shown in table 2.

Table 2. Least-squares curve fit to a straight line for relative humidity
as a function of lidar S(R) return. Curve is Rh = A + B * S(R).

_Date ~A_ B Correlation Maximum Altitude
09/12/89 241.481 28.390 0.9477 1170
09/13/89 178.081 20.755 0.9243 728
09/18/89 218.973 21.564 0.7225 660
09/20/89 226.310 22.770 0.9305 608
09/26/89 270.510 84.270 0.9477 690
09/27/89 305.381 35.382 0.9613 1050
09/28/89 304.918 34.061 0.9315 420
09/29/89 186.333 17.823 0.8232 705
10/02/89 234.921 25.084 0.9417 1343
10/03/89 328.397 42.097 0.9733 1050
10/24/89 161.510 12.123 0.9452 600
11/13/89 219.892 22.416 0.7199 750
11/21/89 378.925 48.379 0.8534 1100

There was at least one important difference between the two types of measurements. While each lidar
data profile was essentially a snapshot of conditions at the moment, the balloon-borne radiosonde rose
about 200 meters per minute. In addition, there was frequently a fairly strong wind blowing that caused
the balloon to drift rapidly, usually southeast over land, during its rise. This could result in the lidar and
the radiosonde seeing somewhat different atmospheric conditions.




DATA ANALYSIS

LIDAR DATA PROCESSING

A curve, determined from calibration measurements, was used to adjust the raw lidar data. The curve
consisted of a fifth-order fit to the calibration data. The resulting data were then adjusted to compensate
for the range-square loss owing to distance. This provided a profile of range-compensated signal, S(R), as
a function of altitude. A 9-point running average of the S(R) data for each profile was used in the
comparison with the radiosonde data. This was done because the lidar frequently showed small-scale
irregularities that the radiosonde did not detect because of a longer sensor response time.

Below about 100 meters altitude, the lidar curves show a rapid decrease. This occurs because the laser
beam inside this distance is not completely in the field of view of the lidar receiver. In addition, above a
certain altitude th~ lidar return approached the background noise level. This altitude depended on
atmospheric coudiions. It ranged from about 600 meters to 1100 meters on various days.

RADIOSCNDE DATA PROCESSING

The r jiosonde provided a record of temperature, pressure, and relative humiity as a function of
time. 1nes< datz were used to calculate altitude and refractivity. Profiles of relative humidity versus
altituce, temperature versus altitude, and M-units versus altitude were generated from these data.

LIDAR S(R) VERSUS RELATIVE HUMIDITY PROFILES

The lidar providzs an S(R) value every 7.5 meters of altitude. These S(R) values were plotted on the
horizontal axis for each altitude, and relative humidity for the corresponding altiude was plotted on the
vertical axis. Figure 4 is an example of these plots. Others are shown in the appendix.

A least-squares fit (0 a straight line was calculated for each profile. Table 2 is a list of these. Usually,
the results show very good correlation between relative humidity and the lidar return for each case.
However, the curve fit for 1 day can be quite different from that for another day. This probably occurs
because the composition, or makeup, of the at'nospheric aerosols can vary with time and with the
direction of the wind.

All of the data have also been plotted on one graph to get an idea of the extent of this variability. This
is shown in figure 5. Then a least-squares fit to a straight line was calculated for the data. The equation for
this line was used to calculate relative humidity profiles from the various lidar .eturns.

LIDAR M-UNIT PROFILES VERSUS RADIOSONDE M-UNIT PROFILES

Relative humidity profiles were calculated from the lidar returns for each of the test days. These
relative humidity profiles were used along with standard-lapse-rate profiles of temperature and pressure
(referenced to surface measurements) to calculate an M-unit profile for each of the test days. The
refractivity profiles were then compared to corresponding profiles calculated from the radiosonde data.
Figure 6 shows two examples of these (others are found in the appendix). The continuous line is for the
radiosonde and the dashed line is for the lidar.




COMPARISON OF SIGNAL COVERAGE PREDICTIONS

Ray-trace diagrams give qualitative, systems-independent appraisals of propagation conditions that are
adequate to the needs of this report. More sophisticated propagation models would generally be required
to assess effects on specific electromagnetic systems.

A Ray-trace computer program in a program called Engineer's Refractive Effects Prediction System
(EREPS) by Hitney et al. (1988) was used to calculate and plot radio signa! coverage for the radiosonde
refractivity profile and for the lidar refractivity profile. Figure 7 shows these for 12 September 1989, with
an inversion near 600 meters altitude. The upper graph is for the radiosonde and the lower one is for the
lidar. Figure 8 shows the same thing for 20 September 1989, when the inversion was near 200 meters
altitude. In this case, both plots show similar ducting conditions. Plots for other days are in the appendix.

CONCLUSIONS

Radio refractivity profiles calculated with the use of lidar data show quite good agreement with those
calculated from radiosonde data. Some of the differences observed may be caused by the radiosonde
encountering changing atmospheric conditions as it drifts horizontally and rises. In addition, day-to-day
changes in the composition of atmospheric aerosols cause some variability in the relationship between the
lidar returns and the relative humidity profiles. Calculations of radio refractivity profiles, however, do not
appear to be very sensitive to these differences. The strong gradients that occur at the inversion level, in
both the lidar return and the relative humidity profile, seem to be the controlling factor in calculating
atmospheric ducting and radio-ray coverage. It therefore appears probable that the lidar may be useful for
predicting tropospheric ducting of radio waves, and the technique merits further investigation.

RECOMMENDATIONS

The work reported here was accomplished with existing equipment. The lidar was not optimum for
this purpose. In addition, the equipment and computer programs were not integrated into a coherent
system. To investigate this idea further, we suggest that an “eyesafe” lidar should be obtained. This lidar
should have a minimum distance crossover point somewhat less than the 80 to 100 meters of the present
lidar. This would allow data to be obtained for elevations closer to the ground.

The lidar should be integrated with a computer, so that the computer controls the firing of the lidar
and reads and processes the lidar data. The computer program should provide for the input of
ground-based measurements of temperature, pressure, and relative humidity. These would be used as
starting points for the standard lapse-rate curves of temperature and pressure. In addition, a ground-based
radio relractivity value would be calculated. A linear interpolation between this value and the minimum-
altitude lidar value would be used to fill in the lowest few meters of the radio refractivity profile.

The computer should also provide a graphic display for any of the following with just the press of a
key: the range-corrected lidar return, the radio refractivity profile calculated from the lidar data, and the
predicted radio-ray coverage. The system should also be capable of providing a hard copy of any of these
graphs.

This system should be tested in a variety of locations and weather conditions.
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Figure 1. Example of a range-compensated lidar return from a cloud.
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Figure 2. Example of a vertical range-compensated lidar return in
the presence of an inversion. Plotted on the same scale as figure 1
for comparison.
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Figure 3. An example comparing the range-corrected lidar return with
a relative humidity profile taken at the same time. The upper curve is
for the relative humidity.
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Figure 6. Two examples comparing radio refractivity M-unit profiles calculated
with lidar data with corresponding profiles calculated with radiosonde data. The
dashed curves are for the lidar data.
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Figure A3. Comparisons of radio-signal coverage predicted with the use of
lidar data with that from radiosonde data. Upper graph is for radiosonde
data. Data for 12 September 1989.
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Figure A3. (Continued.) Data for 13 September 1989.
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Figure A3. (Continued.) Data for 20 September 1989.
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Figure A3. (Continued.) Data for 27 September 1989.
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Figure A3. (Continued.) Data for 29 September 1989.
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Figure A3. (Continued.) Data for 21 November 1989.
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